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 Abstract—During the advancement of modern deep learning 
algorithms, models become increasingly demanding in 
computing resources and power-hungry, such that they are 
considered less hardware-friendly for many real-world 
deployments. The motivation behind brain-inspired computing, 
or neuromorphic computing, is that the human brain remains 
the most sophisticated yet efficient learning module ever. We 
focus on HyperDimensional Computing (HDC), which aims to 
realize efficient learning via brain-like high-dimensional vector 
operations. Prior research works have shown that HDC is a 
lightweight alternative to deep learning in various applications, 
such as classification and reinforcement learning. HDC can also 
serve as a reasoning machine on graph datasets and an 
efficient information retrieval method for genomic sequencing. 
In this paper, we revisit hardware-software codesigns of HDC, 
covering the latest developments in both HDC algorithms and 
accelerator designs. We also carried out extensive 
comparisons between HDC works and the state-of-the-art. 

1. INTRODUCTIONS
The Machine Learning (ML) algorithm has become a powerful tool 
for computers to perform cognitive tasks, as it has shown super-
human accuracy in areas such as image classification, speech 
recognition, and robotic control. However, many existing ML 
algorithms, especially those based on the Deep Neural Network 
(DNN), are computationally intensive, have limited flexibility in 
parallelization, and require high-precision arithmetic operations. In 
the era of the Internet of Things (IoT), these limitations pose 
significant challenges for implementing ML on resource-constrained 
devices, including embedded systems and edge devices. Therefore, 
we have seen an increasing amount of research in the emerging field 
known as neuromorphic computing, focusing on more efficient ML 
approaches that are inspired by brain structure and functionalities. 

As one of the brain-inspired methods, HyperDimensional 
Computing (HDC) seeks to overcome these challenges by mimicking 
the high-dimensional nature of data processing in the brain [2], [33]. 
The development of the HDC paradigm is based on interdisciplinary 
research at the intersection of theoretical neuroscience and 
computer science. For example, human short-term memory carried 
out in the hippocampus region can be modeled as an auto-
associative memory based on orthogonal representations, which 
motivates the high-dimensional representation and light-weight 
memorization in HDC. More specifically, an HDC encoder maps 
original inputs to a high-dimensional space (also known as the 
hyperspace) by representing them as long binary (or real-valued) 
vectors of several thousand dimensions, i.e., hypervectors. Then, to 
realize memorization as well as other brain-like functionalities, HDC 
uses simple element-wise operations to perform symbolic 
manipulations on these hypervectors, such as bundling (More details 
in Section 2). 

HDC owns several unique properties that have been crucial for 
ML applications with stringent efficiency requirements [1], [8]. For 
example, the hypervector representation is holographic, meaning 
that information is distributed evenly across vector components. 
Holographicness plays a key role in encoding distinct concepts with 
random and near-orthogonal representations, allowing HDC to 
represent and manipulate atomic symbols in an intuitive way. 
Another property is that HDC supports concise and efficient learning 
and reasoning, thanks to both the operation-wise simplicity and the 
richness of the hypervector representation. These characteristics 
lead to several advantages of HDC over conventional ML methods, 
such as lower power/energy consumption, faster learning ability, and 
better model interpretability [10], [12], [16], [22].  

 HDC-based algorithms have been applied to various domains of 
applications as a more efficient alternative to existing solutions. For 
classification tasks, prior HDC works have proposed solutions to the 
recognition of text, speech, and image, reaching significantly faster 
training and inference with comparable learning quality to methods 
like DNN and SVM. Besides those common data modalities, HDC 
has also been leveraged for processing multi-sensory readings and 
bio-signals like Electroencephalography (EEG) and Electro-
myography (EMG) [15],[19]. More importantly, HDC enables single-
pass classifier training with satisfying quality, which means that it can 
learn from data in one pass without the need for multiple iterations. 
Recent works also propose HDC-based algorithms for regression 
and Reinforcement Learning (RL), where hypervectors are used to 
learn function representations with fewer samples and iterations [14], 
[18], [24], [25]. Compared to DNN-based algorithms, they bring 
notably faster convergence, resulting in a more efficient RL agent for 
robotic control and resource management. Apart from learning tasks, 
HDC has also shown its strength in reasoning tasks such as graph 
reconstruction, node classification, and graph matching, where the 
hypervector representation powers a transparent, interpretable, and 
lightweight reasoning process [4], [29]. Finally, HDC is bestowed with 
brain-like efficiency in pattern-oriented computations, making it a 
great fit for information retrieval in tasks like genome sequencing [5], 
[9], [26]. In HDC-based sequencing methods, a single hypervector 
can effectively combine multiple patterns, thereby giving much 
higher efficiency in similarity computation and matching.  
 Adding onto the efficiency advantage shown at the algorithm 
level, HDC is especially more hardware-friendly during deployments, 
compared to the DNNs with deep layers and backprop-based 
training. HDC can be implemented in a resource-effective manner 
since the hypervectors are often represented with low-precision 
components, e.g., binaries, and highly parallelizable as most 
operations in the hyperspace are dimension-independent. These 
nice properties allow HDC to further enhance its performance by 
exploiting the characteristics of different hardware platforms, 
enabling HDC-based algorithms to run on low-power and resource-
limited devices that are suitable for real-time and online applications 
[20], [21].  
 For example, HDC can greatly benefit from the high parallelism 
offered by Processing-in-Memory (PIM) architectures [27], [31], [32], 
where it tackles the von Neumann bottleneck on both the hardware 
and algorithm levels. Although PIM platforms have tight budgets for 
the maximum supported model precision, we can leverage the 
robustness of HDC-based algorithms on low-precision models even 
after aggressive quantization. On the other hand, the reconfigurable 
computing logic in FPGA enables the specific data path design 
targeting HDC models. As shown in previous works [?], HDC is also 
intrinsically suitable for acceleration on FPGAs because of its natural 
algorithm-level parallelism and loose requirement for high-quality yet 
power-hungry computing logic (e.g., digital signal processing (DSP) 
unit). 
     In this paper, we summarize prior hardware-algorithm codesigns 
of HDC accelerator targeting different machine leaning applications. 
These applications cover a wide range, including classification, 
regression, reinforcement learning, graph reasoning, and genomic 
sequence matching. For each application, we introduce both HDC 
model design and accelerator design. We also provide hardware 
performance results which include resource utilization and 
comparison with state-of-the-art works. 

2. HDC MOTIVATION AND BASICS
HDC draws inspiration from the insights gained from neuroscience, 
specifically, the observation that the human brain consists of 
approximately 100 billion neurons and an astonishing 1000 trillion 
synapses. Consequently, it becomes plausible to represent all 
possible states of a human brain through a high-dimensional vector. 
To closely mimic the information representation and memorization 
mechanisms observed in the human brain, HDC translates low-
dimensional inputs into a hyperspace. The hyperspace comprises 
hypervectors, each possessing over a thousand independent and 
identically distributed (i.i.d.) components, which can take the form of 
binary, integer, real, or complex values [34]. In this section, we 
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provide the fundamental background for understanding HDC 
systems.  
 A general HDC system can roughly be divided into three stages. 
The first stage in HDC is mainly concerned with the Encoding 
process, which entails the mapping of data into a high-dimensional 
space and the generation of atomic hypervectors. Subsequently, 
HDC performs a series of Hypervector Operations on these 
hypervectors, which are categorized into Binding (Multiplication), 
Bundling (Accumulation), and Permutation (Shift-Rotate). For 
instance, when training HDC class hypervectors, all related 
hypervectors belonging to the same class are bundled together to 
form a unique class hypervector, which serves as the prototype for 
that data class. Finally, the third stage encompasses Similarity 
Measurement, where the similarity between the testing query 
hypervector and the class hypervectors is assessed. Depending on 
the specific task at hand, a range of hyperspaces has been 
proposed, spanning from binary to complex-valued hypervectors. 
Here we take binary hypervector encoding as an example. More 
variations are discussed in the subsequent sections. Binary or 
Bipolar HDC encoding systems primarily rely on vectors with a length 
of up to 10!  bits, where these vectors comprise values of +1 
(representing logic 1) and -1 (representing logic 0). Recent efforts 
have been directed toward reducing the dimensionality of these 
hypervectors to enhance application accuracy, recognizing that 
longer hypervectors carry a more information-rich payload. In 
addition to dimensionality, the type of encoding employed is another 
crucial factor that directly affects accuracy. 
A. Hypervector Encoding 
1) Binary/Bipolar HDC Encoding 
 In binary HDC, data is typically encoded into random 
hypervectors, with an emphasis on ensuring orthogonality between 
them. The concept of orthogonality plays a pivotal role in HDC, as it 
allows for the effective representation of unique features or symbols. 
For example, it enables the representation of letters in a text 
processing system, pixel positions in an image in a cognitive task 
[35], or time series in a voice recognition task [37]. Notably, randomly 
generated vectors tend to exhibit a degree of near orthogonality to 
each other [10]. Consequently, these randomly generated and pre-
allocated vectors effectively serve as atomic data primitives within 
HDC systems, representing symbols. Various methods have been 
employed in the literature to achieve near orthogonality among 
hypervectors. One prominent technique involves initiating the 
process with an initial seed vector and subsequently determining 
additional vectors through random bit-flip operations [38].  
 For example, this encoding is applied for data in the form of 
feature vectors (address and value). For input data of 𝑑 dimensions, 
the model generates an address codebook with one entry for each 
dimension {𝐴", ⋯ , 𝐴#} . And a value codebook {𝐿", ⋯ , 𝐿$} 
corresponding to the 𝑞 quantized levels of the continuous value (we 
assume that the data is normalized for each dimension and thus 
shares the same range). The encoder then performs a bundling of 
the address-value pair association for a data point 𝒙 ∈ ℝ#:  
                           𝐻𝒙 = ∑ 𝐴&#

&'" ⊙𝑉& , 𝑉& ∈ {𝐿", ⋯ , 𝐿$}                       (1) 
2) Kernel-based HDC Encoding 
Prior works [28] also exploit an encoder method inspired by the 
Radial Basis Function (RBF) kernel trick [42, 43], for mapping data 
points into the hyperspace. This encoder considers the non-linear 
relation between the features during the encoding. However, kernels 
like RBF implicitly maps inputs to an infinite-dimensional space, and 
the exact mapping is intractable. Prior work in [39] proposes that with 
a large but finite dimensional mapping 𝑍, the shift-invariant kernel 𝐾 
can be approximated using inner-products: 
                             𝐾(𝑥( − 𝑥)) ≈ 𝑍*(𝑥()+𝑍*(𝑥))                                  (2) 
where 𝐷 is the dimensionality of the mapping. To approximate the 
RBF kernel, the mapping is defined as follows: 

                                𝑍*(𝑥) = ;,
*
𝑐𝑜𝑠?𝐻@@⃗ 𝑥 + 𝐵@⃗ D                                  (3) 

𝐻@@⃗  is a vector of dimension 𝐷 with its elements randomly sampled 
from standard Gaussian distribution 𝒩(0,1)  and 𝐵@⃗  functions as a 

bias vector with elements sampled from uniform distribution 𝒰(0,2𝜋). 
Once they are randomly generated, we keep them fixed during the 
later learning and inference. 
B. Hypervector Operations 
Once information is represented within the hyperspace, composite 
representations can be constructed through dimension-independent 
operations. These operations include bundling, binding, and 
permutation, and they maintain the dimensionality of the 
hypervectors, resulting in a hypervector residing in the same 
hyperspace as the original operands. Furthermore, these operations 
can be combined, offering versatility in creating customized 
encodings that cater to various applications, effectively capturing the 
inherent compositionality found within the data. 
1) Bundling 
Bundling, also known as point-wise addition or accumulation, 
calculates a hypervector 𝒵 = Σ-ℋ𝒾 from a set of input hypervectors 
{ℋ",ℋ,, ⋯ ,ℋ𝒾}. In comparison to randomly generated hypervectors, 
the resulting 𝒵 is maximally similar to the inputs {ℋ",ℋ,, ⋯ ,ℋ𝒾}. In 
the realm of high-dimensional space, bundling functions as a 
memory operation and offers a straightforward means to verify the 
presence of a query hypervector within a bundled set. 
2) Binding 
Binding, also referred to point-wise multiplication, serves the purpose 
of establishing connections between two related hypervectors. 
Hypervectors ℋ"  and ℋ,  are bound together to form 𝒵 = ℋ" ∗ ℋ, 
which is approximately orthogonal to both ℋ"  and ℋ, . Due to 
reversibility, in bipolar cases, 𝒵 ∗ℋ" = ℋ,, allowing for the retrieval 
of information from both hypervectors through the bound 
hypervector. 
3) Permutation 
The unary operation unique to HDC, known as Permutation (ρ-), 
involves the rotational shifting of a hypervector, with 𝑖  indicating the 
number of times the operation is applied. When applied to a 
hypervector ℋ", this operation returns a dissimilar hypervector 𝒵 =
ρ(ℋ") to the input. It also allows for the assignment of specific orders 
to hypervectors within the hyperspace. Notably, the inverse 
operation ρ/&(ℋ) enables the exact retrieval of the original input 
hypervector, ensuring reversibility in the permutation process, as 
demonstrated in \cite{cohen2018bringing}. The permutation operator 
in HDC provides a flexible means of manipulating and organizing 
hypervectors, which proves highly beneficial in a variety of cognitive 
computing tasks. 
C. Similarity Measurement 
In HDC, the assessment of similarity between hypervectors is a 
pivotal measure, determined by the function δ(ℋ",ℋ,) → ℝ. This 
similarity metric is instrumental in discerning the relationships 
between hypervectors. It quantifies the angle between two 
hypervectors and, depending on the type of data, various 
implementations of this measure can be applied. For real or integer 
data, cosine similarity is commonly used. Binary representations, on 
the other hand, can efficiently utilize the Hamming distance for this 
purpose. 

In the case of non-binary hypervectors, cosine similarity, defined 
by Eq. (1) is used to measure their similarity. This measure focuses 
on the angle between the hypervectors and disregards the influence 
of their magnitude, where |	⋅	| signifies the magnitude. Unlike the 
inner product operation of two vectors, which affects both magnitude 
and orientation, cosine similarity solely depends on the orientation. 
In most high-dimensional algorithms featuring non-binary 
hypervectors, cosine similarity is more commonly utilized than the 
inner product. Moreover, when 𝑐𝑜𝑠(ℋ",ℋ,) approaches 1, it signifies 
an exceedingly high level of similarity. For example, 𝑐𝑜𝑠(ℋ",ℋ,) = 1 
indicates two hypervectors ℋ"  and ℋ,  are identical. Conversely, 
when 𝑐𝑜𝑠(ℋ",ℋ,) = 0, the two vectors are considered dissimilar. 

         𝑐𝑜𝑠(ℋ",ℋ,) =
ℋ!⋅ℋ"
|ℋ!||ℋ"|

                                        (4) 

 In the case of binary hypervectors with a dimensionality of 𝐷, 
where their components are either 0 or 1, the normalized Hamming 
distance, as computed in Eq. (2) is used to measure their similarity. 
When the Hamming distance between two hypervectors approaches 
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0, they are defined as similar. For example, 𝐻𝑎𝑚𝑚𝑖𝑛𝑔(ℋ",ℋ,) = 0 
indicates every single bit at each position is the same, marking ℋ" 
and ℋ, are identical. And when 𝐻𝑎𝑚𝑚𝑖𝑛𝑔(ℋ",ℋ,) = 1, it signifies 
that ℋ"  and ℋ,  are diametrically opposed, indicating maximum 
dissimilarity. 

𝐻𝑎𝑚𝑚𝑖𝑛𝑔(ℋ",ℋ,) =
"
*
Σ&*1ℋ!(&)5ℋ"(&)                (5) 

3. HDC-BASED CLASSIFICATION 
A. Hyperdimensional classification algorithm 
In a classification problem, HDC first uses an encoder to map all 
training samples to the hyperspace in training, and similarly we 
encode the test samples at the beginning of the inference process. 
Then hypervectors associated with each class are bundled together 
during the training process, thereby enabling single-pass training. 
Compared with traditional DNN-based models, HDC models use 
much less power and have lower latency. Since HDC efficiently 
leverages hypervectors to compress and memorize the samples 
seen to class hypervectors and then perform learning tasks, HDC 
models are generally smaller than DNN model. In this section, we 
will go through a series of procedures in HDC-based classification 
algorithm. Fig. 1 (a) shows an overview of hyperdimensional 
classification. 
1) Adaptive Single-pass Training: 
In HDC classification, the naive hypervector addition results in 
saturation of class hypervectors by data points with the most 
common patterns. Due to model saturation, data points with non-
common patterns are likely to miss-classified by the model.  
 As shown in Fig. 1 (b), with an adaptive training framework in 
OnlineHD [23], however, we can achieve efficient and accurate HDC 
learning in one pass. Instead of naively combining all encoded data, 
our approach adds each encoded data to class hypervectors 
depending on how much new information the pattern adds to class 
hypervectors. If a data point already exists in a class hypervector, we 

will add no or a tiny portion of data to the model to eliminate 
hypervector saturation. If the prediction matches the expected 
output, no update will be made to avoid overfitting. Assume that δ is 
the similarity between the encoded query hypervector and the 
hypervector for class 𝐶. Instead of naively adding data point to the 
model, we update the model based on the δ similarity. For instance, 
if a training sample that belongs to class 2 is wrongly classified to 
another class. Then, we will update the second class hypervector 
using the query hypervector weighted by the similarity difference: 
(1 − 𝛿,)𝐻@@⃗ . 
2) Adaptive Hypervector Retraining: 
Although single-pass training is suitable for fast and ultra-efficient 
learning, embedded devices may have enough resources to perform 
more accurate learning tasks. HDC classifier also supports retraining 
to enhance the quality of the model. Instead of starting to retrain from 
a naive initial model, the retraining starts from the initial adaptive 
model. This enables HDC to retrain the model with a much lower 
number of iterations, resulting in fast convergence. Fig. 1 (c) shows 
the functionality during adaptive retraining. 
 The adaptive retraining follows a similar learning procedure as 
initial single-pass training. For each encoded training data point, say 
𝐻@@⃗ , we check the similarity of data with all class hypervectors in the 
model and updates the model for each miss-prediction. Retraining 
examines if the model correctly returns the label 𝑙 for an encoded 
query 𝐻@@⃗ . If the model mis-predicts it as label 𝑙′, the model updates as 
the equation shown in the figure, where 𝛿6 = 𝛿?𝐻@@⃗ , 𝐶ℓ@@@⃗ D  and 𝛿6# =
𝛿?𝐻@@⃗ , 𝐶ℓ#@@@@@⃗ D are the similarity of data with correct and miss-predicted 
classes, respectively. This ensures that we update the model based 
on how far a train data point is miss-classified with the current model. 
In the event of a very far miss-prediction, the retraining makes a 
major change in the mode. While in case of marginal miss-prediction, 
the update makes smaller changes to the model. 
B. Hardware and Software Co-Design 
Fig. 2 presents the FPGA acceleration architecture of HDC classifier. 
We first encode each data point by computing the inner product of a 
feature vector with different weight vectors. Since the Gaussian 
distribution creates many near-zero values, we can easily create 
sparse random vectors to reduce the number of multiplications. The 
weight vectors can be stored with a vector with (1 − 𝑠) ×
𝑛	consecutive non-zero values, and an index value that represents 
the index of the first non-zero element where s is the sparsity factor 
and n is the number of features. All weight vectors are stored in Block 
RAM (BRAM), which is on-chip FPGA memory (Fig 2. (a)).  During 
the encoding, our approach prefetches the weight vectors from the 
BRAM blocks and stores them in the locally distributed memory that 
can be accessed faster than BRAM. During the encoding, FPGA 
reads the first m features of original data points (m ≤ n). Next, it 
accesses the weight vector and then multiplies (1 − 𝑠) × 𝑛 
continuous dimensions of the feature vector with the corresponding 
weight vector. These multiplications are processed using Digital 
Signal Processor (DSP) blocks, and they are parallelized for different 
weight vectors. The results of the inner products are accumulated 
using a tree-based adder structure (Fig. 2. (b)). Finally, the cosine 
function is calculated using the lookup table (LUT) logic. Finally, the 
encoded hypervector can be binarized by considering the sign of the 
encoded data as a binary output. 
C. Results 

 
Fig. 2. Hyperdimensional Classification on FPGA. 

 

 
Fig. 1. Hyperdimensional classification algorithm with single-pass and iterative training. 
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We evaluate HDC classification accelerator on Xilinx KC705 FPGA. 
Table I presents the FPGA resource utilization. Regarding the 
acceleration efficiency, we compare the FPGA accelerator with 
Raspberry Pi 3B+ using ARM CPU in Table II. Table II lists the 
number of required OnlineHD dimensions in each bit precision that 
results in maximum classification accuracy. Table II also reports the 
average Energy-Delay Product (EDP) of FPGA and CPU running 
OnlineHD using different hypervector precision. All results are 
normalized to CPU EDP using hypervectors with 32-bit precision. 
Our evaluation shows that the CPU provides the highest efficiency 
using lower-dimensional vectors. This is because CPUs take the 
same number of resources to perform 1-bit or 8-bit arithmetic 
operations. This limits the amount of parallelism in the CPU. In 
contrast, FPGAs are more efficient in processing high-dimensional 
but low precision vectors. The lookup table and flip-flops resources 
on FPGA can perform several parallel bitwise operations and enable 
fast and efficient OnlineHD computation. Our goal is to maximum 
FPGA throughput, where we can process the maximum number of 
data points at a time. To eliminate off-chip memory to be a bottleneck 
of computation, FPGA needs to perform maximum computation over 
each read. We observe that FPGA provides minimum EDP using 2-
bit precision. In this precision, OnlineHD maximizes FPGA resources 
while avoiding high precision arithmetic, as the complexity FPGA 
arithmetic increases exponentially with the bit-width. 

Table I. Hyperdimensional Classification Acceleration on 
Xilinx KC705 

 LUT FF BRAM DSP 
Utilization 43.6% 12.3% 41.7% 43.9% 

 
Table II. Impact Of Bit Precision On CPU & FPGA Efficiency 

 32-bits 16bits 8-bits 4-bits 2-bits 1-bits 
Dim (D) 1.2K 2.1K 3.6K 5.6K 7.5K 8.8K 

EDP CPU 1x 1.11x 1.83x 2.24x 3.1x 4.02x 
EDP FPGA 12.90x 11.39x 6.91x 5.64x 4.08x 4.19x 

 
4. HDC-BASED REINFORCEMENT LEARNING 
A. RL task definition 
The primary goal of Reinforcement Learning (RL) is training an 
agent's capabilities of maximizing rewards when interacting with its 
environment [14, 16, 18]. Based on whether an agent uses a policy 
to select its action for each time step 𝑡 , we can divide the RL 
algorithm into policy-based RL, such as Proximal Policy Optimization 
(PPO) [18], and off-policy RL, such as Deep Q-Learning Network 
(DQN) [14]. Take DQN as an example, at each time step 𝑡, an agent 
receives its state 𝑠8 from the environment and performs an action 𝑎8 
to the environment. The agent maintains a Q function to select the 
action based on its current state 𝑠8 . After conducting 𝑎8  to the 
environment,  
the agent will receive a reward 𝑟8 as feedback and transfer into a new 
state 𝑠89" . The agent will repeat these interactions with the 
environment and try to maximize the cumulative reward 𝑅8 =
∑ γ&/8+
&'8 ∗ 𝑟8, where 𝑇 is the episode's total time, or trajectory length, 

and γ ∈ (0,1] is the time step discount factor. 
B. Hyperdimensional regression algorithm 
Regression is a kind of supervised learning that is used to predict 
continuous function values given its independent variables. It has 
been widely used in data analysis and is also an indispensable 
component in RL algorithms. To find the causal dependencies 
between the variables, regression techniques generally need to rely 
on sophisticated and costly deep learning algorithms. However, 
running these algorithms during training results in significant 
computational power and storage, which is beyond the capability of 
existing edge devices. 
 On the other hand, HDC can serve as a lightweight regressor by 
mapping the original function space to the hyperspace. In HDC-
based regression [25], by using the kernel-based encoder defined in, 
we can construct a hyperdimensional representation of function, 
similar to with the mapping 𝑍* : 𝑅@⃗ = ∑ α:𝑍*(𝑥:): . We refer to this 

mapping 𝑍* as an HDC encoder that outputs encoded hypervectors 
𝑍*(𝑥). The representation 𝑅@⃗  shows that we can approximate the 
function through a weighted sum of encoded training samples, which 
makes itself also a hypervector. In addition, we refer to 𝑅@⃗  as the 
model hypervector, and the inference is simply the inner product 
between the model and encoded hypervector: 𝑓(𝑥) = 𝑅+@@@@@⃗ 𝑍*(𝑥) . 
Notice that the complex conjugate is omitted because 𝑍*(𝑥) has only 
real components. To update the model hypervector 𝑅@⃗ , we feedback 
the prediction error as the weight for the corresponding encoded 
input. Assume a true value 𝑉8;<=  and a predicted value 𝑉>;=# =
𝑅+@@@@@⃗ 𝑍*(𝑥:) , the update step for the model is: 𝑅@⃗ = 𝑅@⃗ + ?𝑉8;<= −
𝑉>;=#D𝑍*(𝑥:) . This update process is essentially tuning the 
parameter α:  for a particular training sample 𝑥:  through the 
hypervector elementwise add/subtract operation, which is highly 
parallelizable and lightweight. 
C. Efficient RL via HDC 
Regression is heavily used in RL to evaluate a certain state, in terms 
of how much total reward can be acquired in expectation if starting 
from this state. To begin with, in the hyperdimensional Q-learning 
algorithm [14], we combine a random exploration strategy with the 
greedy policy, i.e., ϵ-decay policy. Assuming the action space 𝒜 and 
time step 𝑡: 

            𝐴8 = g
𝑟𝑎𝑛𝑑𝑜𝑚	𝑎𝑐𝑡𝑖𝑜𝑛	𝐴 ∈ 	𝒜,𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝜖
𝑎𝑟𝑔𝑚𝑎𝑥?∈	𝒜𝑄(𝑆8, 𝐴), 𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	1 − 𝜖

                (6) 

The probability of selecting random actions will gradually drop after 
the agent explores and learns for several episodes. With a rate of 
changing ϵ-decay less than 1; this ensures agents start to trust their 
learned model gradually. 𝑄(𝑆8, 𝐴) is a hyperdimensional regression 
model that returns approximated Q-values for input action-state 
pairs. Once an action 𝐴8  is chosen, the agent interacts with the 
environment. We then obtain the new state 𝑆89" for the agent and 
the feedback reward 𝑅8 from the environment. At the next time step 
𝑡 + 1 , we select another action 𝐴89" . This chain of actions and 
feedback rewards form a trajectory or an episode until some 
termination conditions are met. To train an RL algorithm, these 
episodes or past experiences are usually saved to local memory as 
training samples. More specifically, we save a tuple of four elements 
for each step in the experience replay buffer: (𝑆8, 𝐴8, 𝑅8, 𝑆89"). 
 The model is trained at the end of each time step after saving 
current information to the replay buffer. We then apply a strategy 
called experience replay; we will sample a one-step experience tuple 
from past trajectories in the replay buffer to train our HDC regression 
model. To update the model, we first encode the input state 𝑆8 to the 
hypervector 𝑆8@@@⃗  and the predicted value 𝑞8_>;=#  is simply calculated 
as the dot product. Since most RL tasks can be viewed as a Markov 
Decision Process (MDP), the Bellman equation gives a recursive 
expression for the Q-value at step 𝑡. To learn the HDC regression 
model that represents the optimal Q-function, we use the Bellman 
optimality equation as shown below: 
                           𝑞8_8;<= = 𝑅8 + γ𝑚𝑎𝑥?𝒬D(𝑆89", 𝐴)                              (7) 
Here we use a delayed model 𝒬D that gets updated periodically using 
parameters in 𝒬, known as the Double Q-Learning. We also include 
a reward decay term γ that adjusts the effect of future rewards on the 
current step Q-value. Finally, we update the model corresponding to 
the action taken, using the error 𝑞8_8;<= − 𝑞8_>;=#  and the encoded 
state hypervector, with the learning rate β: 

 
Fig. 3. Hyperdimensional Q-Learning overview on CPU-FPGA 

Platform. 
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                       𝑀?$%!@@@@@@@@@@⃗ = 𝑀?$@@@@@@@⃗ + β?𝑞8_8;<= − 𝑞8_>;=#D𝑆8@@@⃗                      (8) 
D. Hardware Acceleration Design 
Fig. 3 presents the CPU-FPGA architecture of hyperdimensional 
reinforcement learning acceleration framework [24]. The agent’s 
interaction with the environment is run on a CPU, and a replay buffer 
is maintained on the same host CPU. To accelerate high-
dimensional vectors (called hypervectors) operations during training 
and inference, the host CPU will offload corresponding state, action, 
and reward data to the FPGA kernel via PCIe communications as 
shown in Fig. 3 (a). After finishing the hypervector computation, the 
kernel FPGA will return to training or inferring results back to the host 
CPU. The hypervector computation on the FPGA includes three 
layers: the encoding layer (Encoding), the regression layer 
(Regression), and the model updating layer (Updating). The FPGA 
kernel reads the input data, such as the state, action mask, and 
reward, via the AXI interface from DRAM or HBM. The quantization 
precision that we chose here is a fixed point-32 bit. The original state 
vector is encoded into a HDC vector inside the encoding layer. The 
kernel function that we selected for this layer’s encoding is an 
exponential function. The encoded HDC vectors will then be loaded 
into the regression layer (Fig 3. (c)). The generated Q value will load 
into the updating layer (Fig 3. (d)). Two operations occur inside this 
layer. The first is the selection of the optimal action index and 
relaying it back to the host CPU (Fig 3. (f)). The second is to generate 
the model update value and store it in the on-chip cache (Fig 3. (e)). 
 In Table III, we compare our acceleration of HDC-based RL 
algorithm with previous RL acceleration works. We mainly focus on 
the comparison of DSP utilization, model size, throughput, and 
energy efficiency. 

E. Results 
We implemented hyperdimensional reinforcement learning (HDRL) 
accelerator on Xilinx Alveo U280. The host CPU is Intel Xeon 6226. 
The reinforcement leaning environment includes OpenAI Gym 
CartPole and LunarLander. Table IV presents the resource 
utilization. In Table IV, we compare our HDRL FPGA accelerator with 
state-of-the-art deep reinforcement leaning FPGA accelerator on 
both learning throughput and energy efficiency.  
5. HDC GRAPH REASONING 
A. Problem Definition 

Memorization and reconstruction are essential functionalities that 
enable machine learning algorithms to provide a high quality of 
learning and reasoning for each prediction [4, 29, 36]. Fig. 4 shows 
the general hyperdimensional graph reasoning (HGR) procedure. 
HGR supports two high-level reasoning tasks: graph memorization 
(memorization) and graph reconstruction (reconstruction). Graph 
memorization is the process of compressing the information of a 
graph into a single hypervector. Graph reconstruction aims to rebuild 
the relations between entities based on the previously done 
memorization. 
B. HDC Model Design 
The memorization process (Fig. 4 (a)) includes two steps: the node 
memory hypervector generation, and node memory bundling. The 
memory hypervector is generated by aggregating each node’s 
neighbors’ feature hypervectors. Fig. 4 (b) provides an example of 
node memory hypervectors generation based on the graph shown in 
Fig. 4 (a). The memory bundling process consists of binding each 
node’s hypervector with its memory hypervector and bundling the 
results across all nodes (Fig. 4 (c)).  Fig. 4 (d) gives an example of   
graph node memory reconstruction. To determine each node’s 
neighbor nodes, first we need to reconstruct each node memory 
hypervector. The second is to remove the noise of the reconstructed 
memory hypervector. 
C. Hardware Acceleration Design 

Table III. Comparison Table with previous RL Acceleration works 

 ASPLOS’19[40]      FCCM’20[41]                         ICCAD'20[42] IPDPSW'21[43] DAC'21[44]                           DARL1 

Platform                               Xilinx VCU1525   Alveo U200                           ASIC   PYNQ-Z1                        Alveo U50                             Alveo U280 

Clock                                  180MHz           285MHz                               800MHz   100MHz                       164MHz                                171MHz 

Algorithm                              A3C              PPO                                  A3C     DQN                            DDPG                                  HDQL                       
Task Env                               Discrete         Continuous                           both      Discrete                       Continuous                            Discrete 

Precision                              Floating 32-bit  
Floating 32-
bit -         Fixed 32-bit                   Fixed 32, 16-bit Fixed 32-bit 

DSP                                    2348 3744 -         4 2302 17 

Model Size                             2592.0 KB        229.6 KB                             -         -                              514.4 KB                              64 KB                       

Throughput                             12849.1 IPS      6823.2 IPS                           +         +                              38779.8 IPS                           36597.1 IPS       

Energy Efficiency 141.7 IPS/W      -                                    +         +                              2638.0 IPS/W                          5256.3 IPS/W 
       

Table IV. Resource Utilization and Performance on Alveo U280 
 CartPole Lunar Lander 

LUT 73.1K 117.4K 
BRAM 276 546 

UltraRAM 79 143 
FF 38047 42508 

DSP 17 17 
f (MHz) 171 MHz 171 MHz 
L (cycle) 417 624 

 
Fig. 4. Hyperdimensional graph reasoning (HGR) example. 

   

 
Fig. 5. Hyperdimensional Graph Reasoning Acceleration on CPU-

FPGA Computing Platform. 
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Figure 5 is an overview of the CPU-FPGA heterogeneous platform. 
We first convert the graph representation from adjacency matrix 
format into compressed sparse row (CSR) format. Although the CSR 
format successfully diminishes the matrix’s sparsity, it also incurs the 
computing workload imbalance problem as discussed by previous 
works [20], [25]. To fix this issue, we design an out-of-order (OoO) 
style, density-aware scheduler running on the CPU. The scheduler 
will offload actual hyperdimensional computing (HDC) activities on 
kernel FPGA. Here suppose the hypervector dimension is D. To 
parallelize the matrix multiplication (MM), we split each graph node’s 
hypervector into T chunks. Each chunk’s dimension 𝐷𝑐 =	*

+
. As 

shown in Fig 5, those T vectors will be first loaded into T high 
bandwidth memory (HBM)’s channels and then accessed by T 
independent transaction IP (TXIP). Inside each TXIP, there is one 
aggregator IP (aIP) and one decoder IP (dIP). The aggregator IP will 
conduct memorization computing, and the decoder IP will conduct 
reconstruction computing. After each TXIP finishes its computing 
activities, we concatenate each channel’s chunk and generate the 
result hypervector. 

D. Results 
We implemented HGR accelerator on Xilinx Alveo U50. Table V 
presents resource utilization. Here we try to implement aggregator 
IP and decoder IP on the same FPGA but the implementation of them 
can be separated. In Fig. 6 We compare HDR FPGA accelerator with 
multiple different hardware platforms including NVIDIA GTX 1080, 
RTX 3090, Jetson Orin, and previous PIM accelerator. 
6. HDC GENOMICS 
A. Problem Definition 
The inherent sequential processes of genome matching, which can 
be computationally intensive and slow. The process of predicting the 
possible DNA/RNA sequence that a specific protein has originated 
from is called back-translation. Aligning the back-translated RNA 
sequence against the database locates the most similar sequences 
used to predict the functionality of the unknown protein sequence. 
Proteins are made up of one or more chains of 20 common amino 
acids. An unknown protein can be characterized when its sequence 
shares significant similarity with a protein with known characteristic. 
B. HDC Model Design 
Fig. 7 presents the overview of BioHD [3] sequence search in the 
high- dimensional space. The first step of BioHD is to map the 
genome sequence into a high-dimensional space. BioHD assigns a 
hypervector corresponding to each base alphabet Σ={𝐴,	𝐶, 𝐺, 𝑈} in 
for DNA and Σ={𝐴,	𝐶, 𝐺, 𝑈} for RNA. The encoding module depends 
on the data type and the genomics task. In terms of protein data, 
BioHD assigns a hypervector representing each RNA base and then 
combines them to create a hypervector representing each amino 

acid. The amino acids’ hypervectors are combined by mapping each 
protein sequence into a high-dimensional space. BioHD aggregates 
all encoded protein sequences to generate a reference genome, 
called HDC Library. An HDC library consists of several reference 
hypervectors, where each hypervector memorizes thousands of 
genome sequences in high-dimensional space. Similar to the hu-
man memorization that requires practice, BioHD iteratively checks 
the correctness of memorized information in each library hyper- 
vector to find the most refined hypervectors. During the sequence 
searching, BioHD uses the same encoding to map a query sequence 
into a hypervector. We perform a similarity computation between a 
query and each reference hypervector. By searching for an exact or 
approximate match, BioHD identifies a query’s closeness with 
thousands of memorized patterns stored in each HDC library 
hypervector. 
C. Hardware Acceleration Design 
The hardware design of work [3] is centered around a Processing 
In-Memory (PIM) architecture. This architecture is designed to be 
compatible with existing crossbar memory and supports all 
essential BioHD operations natively in memory with minimal 
modification on the array. Fig. 8 shows the architecture design of 
PIM. Fig. 8 (A) shows an overview of the PIM architecture 
consisting of 128 tiles. Each tile consists of 128 crossbar memory 
blocks. Due to the existing challenges of crossbar memory, each 
memory block is assumed to have a size of 1Kx1K. BioHD 
consists of two types of memory blocks: encoding and distance 
computing. Both blocks are the same conventional crossbar 
array; they are organized in each tile to enable fast and parallel 
sequence searching. As is shown Fig. 8 (B), the block sense 
amplifiers are low-precision ADCs that are shared among several 
memory blocks. Unlike the existing analog-based PIM, crossbar 
memory takes up the majority of our architecture, and ADCs only 
take up a tiny area. Fig. 8 (C) shows the first step of the encoding 
that assigns a codebook to each amino acid. Fig. 8 (D) shows 
that for a block with 1k-columns, each block stores 32 
permutations of the acid hypervectors. Each 32-columns stores 
all possible hypervectors that a protein in a specific position can 
take. These hypervectors can be directly addressed using our 
codebooks. Fig. 8 (E) shows a row-parallel Hamming computing 
between a query and all reference hypervectors stored in the 
memory. This work uses 32-bits windows to ensure 5-bit ADC 
precision. To limit the cost of ADC blocks, we share ADCs among 
multiple distance computing blocks. We use sample & hold (S+H) 
circuit to record the matching line discharging current of each 
block and use time multiplexing to share ADC among 128 
memory blocks. Fig. 8 (F) shows row-parallel dot product 
operation between a query and stored reference hypervectors. 
Fig. 8 (G) shows the whole system’s working pipeline.  

Table V. FPGA Resource Utilization on Xilinx Alveo U50 with 
the Frequency is 200MHz and the Power Consumption is 

29.8W  
 LUT FF BRAM UltraRAM DSP 

aIP 244.4K 101.7K 128 0 0 
dIP 268.3K 122.8K 0 64 2048 

HBM 4320 3496 16 0 9 
Other 72.1K 80.6K 94 0 0 
Total 589.1K 308.7K 238 64 2048 

 

Fig. 6. Hyperdimensional graph reasoning (HGR) acceleration performance on different platforms. 

 
Fig. 7. Hyperdimensional genomic sequence matching. 
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D. Results 

For the hardware design, we use HSPICE for circuit-level simulations 
to measure the energy consumption and performance of all the 
BioHD operations in 28nm technology. We used System Verilog and 
Synopsys Design Compiler to implement and synthesize the BioHD 
controller. For parasitic, we used the same simulation setup 
considered by work in. The interconnects are modeled in both circuit 
and architecture levels. The robustness of all circuits has been 
verified by considering 10% process variations on the size and 
threshold voltage of transistors. Our PIM works with any bipolar 
resistive technologies, which are the most common NVMS. To have 
the highest similarity to commercially available 3D Xpoint, we adopt 
the memristor device with a VTEAM model. The memristor’s model 
parameters are chosen to produce a switching delay of 1ns, a 
voltage pulse of 1V and 2V for RESET and SET operations to fit 
practical devices. 
 Table VI shows the detailed configurations of BioHD consisting 
of 128 tiles. Each tile has 128 crossbar blocks. BioHD has two con- 
figurations: Hamming computing that uses shared ADC blocks for 
distance computing, and Dot Product computing (DOT), where the 
distance is computed using row-parallel PIM arithmetic. In DOT- tile, 
the crossbar memory takes most of the area and power consumption, 
while in HAM-tile, ADCs are taking 28% and 15% of total area and 

power consumption. Each HAM-tile (DOT-tile) takes 0.57𝑚𝑚2 
(0.41𝑚𝑚2) area and consumes 1.07W (0.93W) power. The total 
HAM-chip (DOT-chip) area and average power consumption are 
73.52𝑚𝑚2 and 137.81W (53.04𝑚𝑚2 and 119.79W), respectively 
[30]. All our evaluations are performed when BioHD provides the 
same area in both configurations. Note that our HAM chip can be 
configured to perform both Hamming distance and dot product 
similarity, while DOT Chip is an optimized version that just supports 
dot product similarity. 
 Fig. 9 compares BioHD efficiency with other PIM accelerators. All 
PIMs have the same area as BioHD in the 1-chip configuration. The 
efficiency values are reported compared to GPU. We compute the 
efficiency of PIM accelerator using our cycle-accuracy simulator. The 
results are validated with the performance and efficiency reported on 
each original paper. PipeLayer [6] and FloatPIM [7] are neural 
network accelerators, but their operations can be used to accelerate 
the sequence searching algorithm. Our evaluation shows that BioHD 
provides significant efficiency improvement compared to PIM 
architectures. This efficiency comes from: (i) BioHD capability in 
revisiting alignment using HDC with hardware-friendly operations, (ii) 
BioHD PIM architecture supporting highly parallel essential 
operations, and (iii) data flow in BioHD that eliminates in- ternal data 
movement. 
 Fig. 9 also compares BioHD efficiency with DRAM-based 
accelerators: Ambit [11], ComputeDRAM [17], and Newton [13]. 
DRAM-based PIMs are suitable to accelerate existing alignment 
algorithms that rely on extensively parallel bitwise and arithmetic 
computation. In contrast, these accelerators do not support 
associative search, which is the key functionality of BioHD 
computation. This makes DRAM-based solution ineffective for 
BioHD acceleration. Our evaluation shows that, in the same area, 
BioHD provides 7.3× and 12.0× (14.8× and 15.3×) faster and higher 
energy efficiency com- pared to Newtown (ComputeDRAM). 
7. CONCLUSION 
In this paper, we summarize prior hardware-algorithm codesigns of 
HDC accelerator targeting different machine leaning applications. 
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Table VI. Detailed Configurations of BioHD 
BioHD PIM Parameter 

Component Param Spec Area Power 
Crossbar 

Array 
size 1Mb (1kx1k) 3136um2 6.14mW 

Sense Amp number 1k 49.2um2 0.09mW 
Memory 

Block number 1 3185.2um2 6.23mW 

Hamming Computing (HAM) 
Tile Memory number 128 blocks 0.40mm2 0.78W 

ADC resolution 5-bits, 
1.75GS/s 0.16mm2 0.14W 

S+H number 128 857.6um2 14.97mW 
Interconnect size 128x1k 0.01mm2 31.04mW 

Controller number 1k/row 146.5um2 118.9mW 
HAM-tile size 128Gb 0.52mm2 1.07W 

Dot Product Computing (DOT) 

Tile Memory number 128 blocks 0.40mm2 0.78mW 

Interconnect size 1k/row 0.01mm2 31.04mW 

Controller number 1 146.5 mm2 118.9mW 

DOT-tile size 128Gb 0.41 mm2 0.93W 

HAM Chip 
number 

size 
128 Tiles 

2GB 
73.52 mm2 137.81W 

DOT Chip 
number 

size 
128 Tiles 

2GB 
53.04mm2 119.79W 

 

Fig. 8. Overview of PIM-based BioHD architecture along with encoding and distance computing blocks. 

Fig. 9. Hyperdimensional genomic sequence PIM comparison 
with state of the art. 
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